Berkovich spaces over \mathbb{Z} and Schottky spaces

Abstract: Berkovich spaces over \mathbb{Z} look like fibrations that contain complex analytic spaces as well as p-adic analytic spaces for every prime number p. We will give a short introduction to those spaces and explain that they provide a convenient setting to parametrize certain natural families such as Schottky groups and Mumford curves over arbitrary local fields. More precisely, for each g greater than 1, there exists an open subset S_g of the affine analytic space over \mathbb{Z} of dimension $3g - 3$ that parametrizes Schottky groups with g generators. Using Schottky uniformization (due to Mumford in the non-archimedean case), one can associate with each point of S_g a projective curve, obtained as a quotient of an open subset of the projective line by the action of the corresponding Schottky group. We will explain that it is possible to carry out this construction globally: there is a universal Mumford curve that is projective over S_g as well as a universal uniformization over S_g with a globally defined analytic map to the universal curve. (This is joint work with Daniele Turchetti.)